Find a fraction $\frac{x}{y}$ , where $(l_1 \leq x \leq r_1, l_2 \leq y \leq r_2)$, such that $|\frac{x}{y} - \frac{a}{b}|$ is minimum.
The input is made up of 1 line containing $6$ integers $a, b, l_1, r_1, l_2, r_2,$ $(1 \leq a,b \leq 10^6, 1 \leq l_1 \leq r_1 \leq 10^6, 1 \leq l_2 \leq r_2 \leq 10^6)$.
Print two integers $x$, $y$ such that $|\frac{x}{y} - \frac{a}{b}|$ is minimum.
If more than one answer exists, print any of them.
1 2 1 2 3 5
2 4
1 1000000 1 6 1 3
1 3