#include <bits/stdc++.h>
#define F first
#define S second
using namespace std;
typedef long long ll;
const int N = 1000001;
// array to store inverse of 1 to N
ll factorialNumInverse[N + 1];
// array to precompute inverse of 1! to N!
ll naturalNumInverse[N + 1];
// array to store factorial of first N numbers
ll fact[N + 1];
// Function to precompute inverse of numbers
void InverseofNumber(ll p)
{
naturalNumInverse[0] = naturalNumInverse[1] = 1;
for (int i = 2; i <= N; i++)
naturalNumInverse[i] = naturalNumInverse[p % i] * (p - p / i) % p;
}
// Function to precompute inverse of factorials
void InverseofFactorial(ll p)
{
factorialNumInverse[0] = factorialNumInverse[1] = 1;
// precompute inverse of natural numbers
for (int i = 2; i <= N; i++)
factorialNumInverse[i] = (naturalNumInverse[i] * factorialNumInverse[i - 1]) % p;
}
// Function to calculate factorial of 1 to N
void factorial(ll p)
{
fact[0] = 1;
// precompute factorials
for (int i = 1; i <= N; i++)
{
fact[i] = (fact[i - 1] * i) % p;
}
}
// Function to return nCr % p in O(1) time
ll nCr(ll N, ll R, ll p)
{
// n C r = n!*inverse(r!)*inverse((n-r)!)
ll ans = ((fact[N] * factorialNumInverse[R]) % p * factorialNumInverse[N - R]) % p;
return ans;
}
int main()
{
ios_base::sync_with_stdio(0);
cin.tie(0);
ll p = 1000000007;
InverseofNumber(p);
InverseofFactorial(p);
factorial(p);
int t;
cin >> t;
while (t--)
{
ll n;
cin >> n;
ll k = 0, ans = 0;
while (n >= k)
{
ans += nCr(n, k, p);
ans %= p;
n--, k++;
}
cout << ans << "\n";
}
return 0;
}
Copy